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We demonstrate the effect of an antisymmetric magnetic field on the edge states in inverted HgTe quantum wells
using the Landauer-Büttiker formula coupled with the Green’s function technique. At any width of the zero-field
region, gapless edge modes appear inside the bulk band gap. By calculating the wave function distribution, we
find that (i) for Fermi energies inside the bulk gap, the edge states propagate helically along the sample boundaries
as a quantum spin-Hall insulator; and (ii) for Fermi energies outside the bulk gap, a pair of states propagate along
the boundaries, while the other pair of “snake states” appear and counterpropagate along the central zero-field
region. We show numerically that the edge modes in the latter case are robust against the short-range Anderson
disorder.
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The quantum spin-Hall (QSH) state is a gapless helical edge
state that lies inside a bulk insulating gap and is topologically
protected.1–3 Since the proposal of the QSH effect or Z2

topological insulator in graphene by Kane and Mele,1,4 its
peculiar topological properties have attracted intense interest
from both theoretical and experimental communities.5–7 Due
to weak intrinsic spin-orbit coupling,8 it is difficult to observe
the QSH effect in graphene. Fortunately, the QSH state was
soon realized in two-dimensional (2D) HgTe/CdTe quantum
wells with an inverted electronic structure.9,10 So far, there has
been much progress in searching for 2D topological insulator
systems,11–13 and some of them (e.g., the inverted InAs/GaSb
quantum wells14) have been confirmed experimentally. Be-
cause of their experimental relevance, the helical edge modes
and corresponding transport properties of 2D QSH systems
have been used to design devices.15–24 Recently, electron
transport properties in HgTe QSH systems under a uniform
magnetic field have been broadly investigated.25–27 However,
very little has been done to study the influence of nonuniform
magnetic fields on the transport properties of QSH systems.

In this Rapid Communication, we investigate the effect
of an antisymmetric perpendicular magnetic field (shown in
Fig. 1) on the QSH effect in an inverted HgTe/CdTe quantum
well. The magnetic field varies only along the transverse
direction (the y axis) of the HgTe waveguide. For simplicity,
it is assumed to vanish in a strip of the HgTe waveguide and
have the same strength but opposite directions in the upper
and lower part of this strip. It is shown that under this kind
of magnetic field the helical edge mode still holds inside the
bulk band gap. However, when the Fermi energy is located
outside the bulk gap, we find that a pair of spin-polarized edge
modes are located at sample boundaries propagating from left
to right, while the other pair of “snake states” are induced to be
localized near the zero-field regime and counterpropagate from
right to left. We show numerically that these spin-polarized
edge states and snake states are robust against the short-range
Anderson disorder.

In the tight-binding representation, the effective four-band
Hamiltonian of the HgTe/CdTe quantum well can be written

as9,10,19,28,29
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where i = (ix,iy) is the site index, ψi = [ai,bi,ci,di]T rep-
resents the four annihilation operators of electron on the
site i at the special states |s, ↑〉, |px + ipy, ↑〉, |s, ↓〉, | −
(px − ipy), ↓〉, respectively, and x̂, ŷ, and ẑ are three unit
vectors. In terms of five material-dependent parameters A,
B, C, D, and M , the on-site energies εs and εp, together
with the hopping energies vss , vpp, and vsp, are expressed as
εs = C + M − 4(B + D)/a2, εp = C − M − 4(B − D)/a2,
vss = (D + B)/a2, vpp = (D − B)/a2, and vsp = −iA/2a.
The lattice constant of our tight-binding model is taken as
a = 5 nm. Under the magnetic field B = Bz(y)ẑ, the nearest-
neighbor hopping terms acquire a Peierls phase φij = ∫ j

i A ·
dl/φ0. Here A = − ∫ y

L/2 Bz(y ′)dy ′x̂ is the vector potential and
φ0 = h̄/e.
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FIG. 1. (Color online) Schematic plot of a HgTe waveguide in
the presence of a perpendicular nonuniform magnetic field. The
magnetic field vanishes in a strip and has the same strength but
opposite directions in the upper and lower part of the strip. The
arrows illustrate how the edge modes and snake states propagate in
the classical picture.

In the following numerical calculations, the five material
parameters for a realistic HgTe/CdTe quantum well are set
to be A = 3.645 eV Å, B = −68.6 eV Å2, C = 0, D =
−51.2 eV Å2, and M = −10 meV. The waveguide spans
the region 0 < y < L with L = 80a. The strength of the
nonuniform magnetic field in the upper region is fixed at
Bu = 0.03φ0/a

2 (=0.79 T). In Fig. 2, we plot the band
structures of the system with different widths of the zero-field
region [0a in Fig. 2(a) and 20a in Fig. 2(b)]. Under a uniform
magnetic field, the energy bands of the HgTe waveguide are
spin split and the edge states may be gapped.27 However, the
energy spectrum in Fig. 2 is doubly degenerate, and gapless
edge modes arise inside the bulk gap. The reason is that the
considered system is invariant under the rotation operation
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FIG. 2. (Color online) Band energy E vs longitudinal wave vector
K for the considered HgTe waveguide with width L = 80a. The
strength of the nonuniform magnetic field in the upper region is fixed
at Bu = 0.03φ0/a

2. The widths of the zero-field region are 0a in
(a) and 20a in (b), respectively.
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FIG. 3. (Color online) Wave function distribution of states A, B,
C, and D labeled in Fig. 2(a). States A, B, and C are localized at the
boundary, while state D is localized at the central zero-field regime.
The inset in (b) shows the the variation of LD/L with the waveguide
width L, where LD is the full width at half maximum for the wave
function distribution of the spin-up state D.

C2x around the center of the zero-field region. The presence of
magnetic fields leads to a series of Landau levels, as shown in
Fig. 2(a). When the zero-field region is broadened, the second
Landau level is no longer flat and becomes parabolic [see the
band labeled with G and H in Fig. 2(b)]. This is distinct from
the flat Landau levels under uniform magnetic fields.27

For the typical states (A–H) labeled in Fig. 2, the corre-
sponding wave function distributions across the y direction
are plotted in Figs. 3 and 4. States A and B lie inside the
bulk band gap (in the interval between the first Landau levels
of the conduction and valence bands), while states C–H are
situated between the first and the second Landau levels of
the conduction band. It is seen from Figs. 3(a) and 3(c) that
the spin-up and spin-down states of A or B are localized at
opposite boundaries, and the opposite spin components of A
and B are located at the same boundary. From both the energy
dispersion and the edge-state localization, one can conclude
that for Fermi energies inside the bulk band gap the helical
edge-state propagation resembles that of the QSH effect. Since
states B and C belong to the same linear energy spectrum,
their wave functions share the similar spin-polarized edge-state
propagation. The spin polarization of the helical edge states
can be detected as in Ref. 30 via the inverse spin-Hall effect.

In two-dimensional electron gas (2DEG) or graphene sys-
tems modulated by an antisymmetric magnetic field, “snake”
states can be formed at the interfacial zero-field region.31–35

Recent resistance measurements on locally gated graphene
devices36 have provided an experimental signature of snake
states along a graphene p-n junction. In the considered system
there also exist snake states such as D and F–H. The wave
function distributions of these states [see Figs. 3(b), 3(d), and
4] are concentrated around the interfacial zero-field region.
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FIG. 4. (Color online) Wave function distribution of states E, F,
G, and H labeled in Fig. 2(b). State E is localized at the boundary,
while states F, G, and H are localized at the central zero-field regime.

For the wave function distribution of the snake state such as
D [Fig. 3(b)], its full width at half maximum LD seems to be
comparable with the waveguide width L. A finite size scaling
shown in the inset of Fig. 3(b) indicates that this state is really
localized along the transverse direction of the waveguide.
Further, for the states connected with the first (second) Landau
level the profile of the wave function has one peak (two peaks).
Because the spin-polarized edge states always propagate along
the same direction, these snake states are spin dependent in our
system, which are distinct from those in 2DEG or graphene.
One can see that the spin-up or spin-down snake state keeps
spatially mirror symmetric around the central line y = L/2 of
the sample.

Based on the energy dispersion and the wave function
distribution, we can reach a clear picture of the edge modes in
the considered system. When the Fermi energy is outside the
bulk band gap, one pair of opposite-spin edge states transverse
from right to left, while another pair of spin-resolved snake
states counterpropagate along the central zero-field region
from left to right. This is intuitively illustrated in Fig. 1.
For Fermi energy inside the interval between the first Landau
levels of the conduction and valence bands, only a helical edge
mode exists. The spin-polarized edge modes can be utilized to
produce a stable spin bias and spin current.

One may wonder whether the spin-polarized edge states and
snake states discussed above are robust against disorders. To
this end, in Fig. 5 we explore the disorder effect on the transport
properties of the HgTe waveguide under the considered
nonuniform magnetic field. To avoid redundant scattering from
mismatched interfaces between the semi-infinite leads and the
central scattering region, we assume that the total system is
described by Eq. (1) with a position-dependent parameter C.
In the leads, C ≡ 0. In the central region (with size 80a × 50a)
C is uniformly distributed in the range of [−W/2, W/2],
where W measures the disorder strength. The conductance

−10 0 10 20
0

0.5

1

1.5

2

2.5

3

E
F
(meV)

G
(2

e2 /h
)

 

 

−10 0 10 20
0

0.5

1

1.5

2

2.5

3

E
F
(meV)

G
(2

e2 /h
)

 

 

W=0meV
W=50meV
W=100meV
W=150meV
W=200meV

W=0meV
W=50meV
W=100meV
W=150meV
W=200meV

(a)
(b)

FIG. 5. (Color online) Conductance spectrum under different
disorder strengths W . The central scattering region has a length 50a.
Other parameters are the same as Fig. 2.

G is obtained from the Landauer-Büttiker formula37

G = 2e2

h
Tr[�RGr�LGa], (2)

where �R/L = i(�r
R/L − �a

R/L), �r
R/L is the self-energy de-

scribing the coupling between the right/left semi-infinite lead
and the central region,38 Gr = (EF − HC − �r

L − �r
R)−1 is

the retarded Green’s function, and HC is the Hamiltonian for
the central scattering region.

In the numerical simulation, the conductance G is averaged
over up to 500 ensembles. In the absence of disorder (W = 0)
the conductance shows quantum conductance plateaus in
units of 2e2/h [see Fig. 5(a)]. These quantum conductance
plateaus are contributed by the spin-polarized edge states
and snake states. When the disorder is present, only small
fluctuations are imposed on the first conductance plateau
2e2/h. Such observations demonstrate that the spin-polarized
edge states and snake states are robust against disorder, which
is due to their spatial separation. Further, one can see that
the strong disorder first destroys the part of the quantum
conductance plateau including the contribution of the snake
states, then destroys the part of the quantum conductance
plateau originated only from the spin-polarized edge states.
The reason is that the snake states are distributed in the central
region of the sample. The second quantum conductance plateau
4e2/h can be seen in Fig. 5(b), which is contributed partly by
states G and H in Fig. 2. From Fig. 4 we know that states
G and H are easily destroyed by disorder. Thus the second
quantum conductance plateau is destroyed even at a weak
disorder W = 50 meV.

Finally, we give some remarks. In our setup we take sharp
edges for the magnetic fields at the upper and lower parts of the
strip. In reality, at both edges the magnetic fields are smooth
and even have in-plane components Bin. The inclusion of Bin

introduces only a Zeeman term in Eq. (1). Experimentally, in
HgTe/CdTe quantum wells the Zeeman splitting is very small
for a magnetic field smaller than 10 T.39 For the considered
magnetic field on the scale Bu ∼ 1 T, the Zeeman term can
be safely omitted. Our antisymmetric magnetic field can be
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generated by depositing two parallel ferromagnetic films (with
magnetization ±M ẑ) on top of the quantum well. Within the
waveguide (0 < y < L) the corresponding vector potential
can be approximated by Ax(y) = Am[1 − sin(πy/L)]. For this
smooth Ax profile with Am = Bua our calculations also give
snake states and spin-polarized edge states which are similar
as those in Figs. 2–4.

In summary, we have investigated the dynamics of electrons
in a HgTe/CdTe quantum well in an antisymmetric magnetic
field. The energy bands and wave function distribution are
calculated. Although such a magnetic field breaks the time-
reversal symmetry, the energy spectrum is still doubly degen-
erate due to the C2x symmetry of the system. Gapless edge
modes arise inside the bulk band gap, which is independent
of the width of the zero-field region. However, when the
Fermi level is located outside the bulk gap, we find that

a pair of spin-polarized edge modes are located at sample
boundaries propagating with the same direction. Based on the
spin-polarized edge mode, a stable spin bias and spin current
can be produced. In addition, a pair of spin-resolved snake
states are induced to be localized near the zero-field region.
We numerically show that these spin-polarized edge states
and snake states are robust against the short-range Anderson
disorder.
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Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007).

11Z. H. Qiao, W.-K. Tse, H. Jiang, Y. G. Yao, and Q. Niu, Phys. Rev.
Lett. 107, 256801 (2011); X. Li, Z. H. Qiao, J. Jung, and Q. Niu,
Phys. Rev. B 85, 201404(R) (2012).

12C.-C. Liu, W. X. Feng, and Y. G. Yao, Phys. Rev. Lett. 107, 076802
(2011).

13Q.-F. Sun and X. C. Xie, Phys. Rev. Lett. 104, 066805 (2010).
14I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603

(2011).
15T. Yokoyama, Y. Tanaka, and N. Nagaosa, Phys. Rev. Lett. 102,

166801 (2009).
16A. R. Akhmerov, C. W. Groth, J. Tworzydło, and C. W. J. Beenakker,

Phys. Rev. B 80, 195320 (2009).
17V. Krueckl and K. Richter, Phys. Rev. Lett. 107, 086803 (2011).
18J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Phys. Rev. Lett. 102,

136806 (2009).
19H. Jiang, L. Wang, Q.-F. Sun, and X. C. Xie, Phys. Rev. B 80,

165316 (2009).

20W. Li, J. Zang, and Y. Jiang, Phys. Rev. B 84, 033409 (2011).
21C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydło, and

C. W. J. Beenakker, Phys. Rev. Lett. 103, 196805 (2009).
22Y. X. Xing, L. Zhang, and J. Wang, Phys. Rev. B 84, 035110

(2011).
23K. Chang and W.-K. Lou, Phys. Rev. Lett. 106, 206802 (2011).
24Q.-F. Sun, Y.-X. Li, W. Long, and J. Wang, Phys. Rev. B 83, 115315

(2011).
25J. Maciejko, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 82, 155310

(2010).
26G. Tkachov and E. M. Hankiewicz, Phys. Rev. Lett. 104, 166803

(2010).
27J.-C. Chen, J. Wang, and Q.-F. Sun, Phys. Rev. B 85, 125401

(2012).
28M. König, H. Buhmann, L. W. Molenkamp, T. L. Hughes, C.-X. Liu,

X.-L. Qi, and S.-C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008).
29C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys. Rev.

Lett. 101, 146802 (2008).
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